To solve the given limit problem, we can use L'Hôpital's rule since it involves a 00 indeterminate form. The problem is:
limx→0xn−sinnxxnsinnx
Given that the limit is a non-zero finite value, let's solve it step-by-step:
- Apply L'Hôpital's Rule: limx→0g(x)f(x)wheref(x)=xnsinnxandg(x)=xn−sinnx
First derivatives: f′(x)=dxd[xnsinnx] g′(x)=dxd[xn−sinnx]
Derivatives: f′(x)=nxn−1sinnx+xn⋅nsinn−1x⋅cosxg′(x)=nxn−1−nsinn−1x⋅cosx
Simplify the derivatives: limx→0nxn−1−nsinn−1xcosxnxn−1sinnx+nxnsinn−1xcosx
Factor out common terms: =limx→0nxn−1−nsinn−1xcosxnxn−1sinnx+nxnsinn−1xcosx
Factor n and xn−1 out of the numerator and denominator:
=limx→0nxn−1(1−(sinx/x)n−1cosx)nxn−1(sinnx+xsinn−1xcosx)
Since sinx≈x as x→0: sinx≈x⇒sinnx≈xn⇒xsinx≈1
- Apply these approximations: =limx→0nxn−1(1−(x/x)n−1cosx)nxn−1(xn+x⋅xn−1cosx)
=limx→0nxn−1(1−cosx)nxn−1(xn+xncosx)
=limx→0nxn−1⋅0nxn−1⋅2xn
=limx→002xn
For the limit to be finite and non-zero, the x-terms must cancel out, suggesting n=1.
Thus, the value of n must be 1.
Therefore, the answer is: