Limits problem

By Vyshu shetty in 18 Jun 2024 | 07:41 am
Vyshu shetty

Vyshu shetty

Student
Posts: 2
Member since: 17 Jun 2024

Please solve the problem 65

18 Jun 2024 | 07:41 am
0 Likes
Vyshu shetty

Vyshu shetty

Student
Posts: 2
Member since: 17 Jun 2024

Please solve 65 th problem 

18 Jun 2024 | 09:27 am
0 Likes
Love Malhotra

Love Malhotra

Student
Posts: 22
Likes: 1
Member since: 20 Feb 2024

To solve the given limit problem, we can use L'Hôpital's rule since it involves a 00 indeterminate form. The problem is:


limx0xnsinnxxnsinnx



Given that the limit is a non-zero finite value, let's solve it step-by-step:



  1. Apply L'Hôpital's Rule: limx0f(x)g(x)wheref(x)=xnsinnxandg(x)=xnsinnx



First derivatives: f(x)=ddx[xnsinnx] g(x)=ddx[xnsinnx]



  1. Derivatives: f(x)=nxn1sinnx+xnnsinn1xcosxg(x)=nxn1nsinn1xcosx



  2. Simplify the derivatives: limx0nxn1sinnx+nxnsinn1xcosxnxn1nsinn1xcosx



  3. Factor out common terms: =limx0nxn1sinnx+nxnsinn1xcosxnxn1nsinn1xcosx



Factor n and xn1 out of the numerator and denominator: 


=limx0nxn1(sinnx+xsinn1xcosx)nxn1(1(sinx/x)n1cosx)



Since sinxx as x0: sinxxsinnxxnsinxx1



  1. Apply these approximations: =limx0nxn1(xn+xxn1cosx)nxn1(1(x/x)n1cosx)

=limx0nxn1(xn+xncosx)nxn1(1cosx)

=limx0nxn12xnnxn10

=limx02xn0



For the limit to be finite and non-zero, the x-terms must cancel out, suggesting n=1.



Thus, the value of n must be 1.



Therefore, the answer is: (1) 1

23 Jun 2024 | 10:28 pm
0 Likes
Love Malhotra

Love Malhotra

Student
Posts: 22
Likes: 1
Member since: 20 Feb 2024

Hope you got your answer!

23 Jun 2024 | 10:32 pm
0 Likes

Report

Please describe about the report short and clearly.